W sifcoasc

Advancements in Brush Plated Metal Matrix Composites

Danijela Milosevic-Popovich

R&D Engineer/Project Engineer

Who is SIFCO?

SIFCO Applied Surface Concepts

- Founded in 1959
- Acquired as part of the Surface Coatings Division of Norman Hay in 2012.
- Headquartered in Cleveland, Ohio, USA

Norman Hay Group

- Headquartered in Coventry, UK
- Other divisions specialize in impregnation sealants, surface coatings, design, manufacture, and installation of process plant equipment.
 - Ultraseal International, Surface Technology, and NHE
- Company founded in 1940s doing chromium plating and hard anodizing.

Metal Matrix Composite (MMC) Agenda

- What is Selective Plating (aka Brush Plating)?
- MMC What, Why, How, & Where?
- Equipment Set-Up and Design Evolution
- General Plating Conditions
- Ni/WC Processing Parameters and Evaluation
- Ni/Cr₃C₂ Processing Parameter and Evaluation
- Co/Cr₃C₂ Processing Parameters and Evaluation

What do WE do? Selective Plating...Brush Plating...

The SIFCO Process is a portable method of electroplating localized areas without the use of an immersion tank.

 An electrolyte containing metal ions is introduced between a positively charged anode and a negatively charged part / component.

- Selective Plating Features
 - Brushing action disturbs the hydrodynamic boundary layer at the surface resulting in faster solution movement.
- High solution velocity also replenishes metal ions at the surface more quickly.
- Hydrogen gas bubbles are removed by the brushing action and high solution velocity.
- Brush action levels the deposit as it builds.
- Selective plating allows for easily controllable application of the coating just where it is needed on the part / component.

Metal Matrix Composite Coating (MMC)

- What is MMC?
 - Composite material with at least two constituent parts
 - ≻Two phases formed
- How?
 - >Particles are suspended in the solution
 - Mixed metal matrix formed during codeposition

- Why use an MMC?
 - Structural reinforcement
 - ➤Wear resistance
 - Friction coefficient
 - >Oxidation protection at high temperatures
 - Main Driver → Safer eco-friendly alternative to chrome
- Where?
 - ➢ Bearing Surfaces
 - >Tubes and nozzles carrying abrasive particles
 - ➢Rotor Blades and stator vanes

Brush Plating Set-Up

3 Main Pieces of Equipment

- Solution collection and circulating system
- 2. Rectifier
- 3. Anode and wrap
 - >Non-abrasive vs abrasive

Tank Design – Fluid Transport

Generation I Traditional Flow System

~10 – 20% particle suspension

Generation 2

Generation 3

~90% particle suspension

General Plating Conditions

Step	Description	Plating Parameters	
Preparatory	Electroclean	10 – 15Volts (Fwd)	
Steps	Etch	9 – 10 Volts (Rev)	
	Desmut	12 – 15 Volts (Rev)	
Preplate	Ni Sulfate	9 – 10 Volts (Fwd) 2 μm	
Plate	I) Co-Cr ₃ C ₂ pH I.6 80 gr/lt Co 40 – 500 gr/lt Cr ₃ C ₂ Particle Size: 6 μ m	Temperature: 20 - 40°C Current Density: 0.3 – 1.24 A/cm ² (2 – 8 ASI)	
	 I I) Ni-Cr₃C₂ pH 7.6 52 gr/lt Ni 50 gr/lt Cr₃C₂ Particle Size: 1.7 & 6 μm 	Temperature: Room Temperature Current Density: 0.75 A/cm ² (5 ASI)	
	III) Ni-WC pH 7.6 52 gr/lt Ni 20 & 50 gr/lt WC Particle Size: 6 μm	Temperature: Room Temperature Current Density: 0.75 A/cm ² – 1.24 A/cm ² (5 – 8 ASI)	

Ni-WC Evaluation

- 1) Demonstrate feasibility of depositing a Ni-WC matrix
- 2) Evaluate various process parameters

Brush materials

Abrasive red and purple scotch brite materials
 Non-Abrasive white scotch brite material
 Current Density 0.75 – 1.24 Amps/cm²

- ✤Bath Loading at 20 gr/lt and 50 gr/lt of WC powder
- ♦ Particle size \rightarrow 6 µm Cr₃C₂

... Overall impact on composition, morphology, and wear

Pure Nickel Abrasive Red @ 0.37 A/cm²

Pure Nickel Non-Abrasvie White @ 1.24 A/cm²

Composition Population 2

sifcoasc.com

Effect of Flow & Wrap material on Composition

X = magnetically stirred set-up, solution flowing from side (S) or center (C), or air stir setup.

Abrasive materials

provide a more uniform

W composition

solution flow from center (A)

m = Sample Number

Y = Brush material, white (W), red (R), purple (P) n = Current density $(0.75 \text{ or } 1.24 \text{ A/cm}^2)$

	Sample	Average (at.% of W)	Coefficient of variation	Average (at.% of W)	Coefficient of variation
Batch 1	SW-75	4.0±0.7	19%	8.6±2.9	33%
50 gr/lt	SW-124	7.3±1.5	20%	14.5±5.3	36%
WC	CW-75	9.4±1.6	17%	17.3±3.4	20%
Batch 2	AW-75	4.9±1.6	19%	13.3±4.2	31%
20 //	AR-75_1	3.0±0.8	27%	6.6±3.3	49%
20 gr/lt	AR-75_2	3.3±0.3	9%	5.6±2.2	40%
vvC	AP-75_1	1.7±0.2	10%	3.6±0.6	18%
	AP-75_2	2.2±0.2	11%	3.6±0.5	14%

Two particle distribution zones

Composition Population 1

- Population 1 \rightarrow Continuous Flow
 - Lower composition, less variation
- Population 2 → Solution pooling and sedimentation
 - Higher composition average, higher variation

Ni-WC deposits produced with Abrasive vs Non-Abrasive Materials

AW-75

White Non Abrasive @ 0.75 A/cm²

AR-75

Red Abrasive @ 0.75 A/cm²

Ni-WC Abrasive Wear: Taber Wear Testing

✤Taber Wear 15,000 cycles Resurface every 1000 cycles CS-17 wheels

AR-75_2

Localized coating failures for all samples from Batch 1 with 50 gr/lt WC

No coating failures with 20 gr/lt WC loading

Comparison

- Pure Nickel TWI = 14 20
- Ni-WC TWI = 6
- Hard Chrome TWI = 3.2

Ni-WC Abrasive Wear: Taber Wear Testing

Ni-Cr₃C₂ Evaluation

- 1) Demonstrate feasibility of depositing a Ni- Cr_3C_2 matrix
- 2) Evaluate various process parameters different brush materials

Brush Materials

- Abrasive red and purple scotch brite material
- Non-Abrasive white scotch brite material
- - $_{\odot}$ 1.7 and 6 $\mu m \ Cr_{3}C_{2}$

... Overall impact on composition, morphology, and wear

Ni-Cr₃C₂ deposits produced with Abrasive vs Non-Abrasive Materials

White Non-Abrasive

Red Abrasive All samples plated at 0.75 A/cm² **Purple Abrasive**

Particle size has the largest impact on the overall composite deposit morphology. Deposit morphology containing 1.7 micron particles are the same for all brush materials. Abrasive materials (red and purple) produced a smoother finish with smaller nodules.

Ni-Cr₃C₂ Surface Roughness

Average Ra (µm)

✤ pB-n

- $p = Particle size 1 or 6 \mu m$
- B = Brush material, white (W), red (R), purple
 (P)
- n = Sample Number

Sample	R _a (µm)	Mr ₁ (% of profile)	Mr ₁ (% of profile)	A1 (µm x % profile)	A2 (µm x % profile)	R _{pk} (µm)	R _{vk} (µm)
1P-1	2.5±0.3	11±3	86±4	15±8	29±14	2.6±0.8	4.2±1.2
1P-2	2.3±0.2	12±5	88±2	17±10	20±10	2.7±0.6	3.2±1.3
6P-1	6.7±0.7	16±5	91±3	200±12	50±30	22.7±9.3	10.6±3.5
6P-2	4.1±0.4	10±4	90±3	19±11	24±10	3.6±1.2	4.6±0.8
1R-1	2.3±0.3	14±4	90±3	40±20	21±10	5.4±1.9	4.3±1.8
1R-2	2.3±0.3	12±3	89±3	19± 6	19±6	3.2±0.7	3.3±0.7
6R-1	10.6±1.6	12±5	90±4	80±60	60±50	12.1±5.6	11.5±4.6
6R-2	15.9±1.8	12±3	91±2	110±90	70±40	17.2±8.9	15.0±4.3
1W-1	6.9±1.1	15±6	87±4	120±60	70±30	14.4±5.6	10.3±3.0
1W-2	4.1±0.5	9±2	84±2	20±12	61±14	4.3±1.8	7.5±1.2
6W-1	10.3±1.5	10±7	91±4	70±80	40±30	8.9±6.4	7.9±3.5
6W-2	4.1±0.2	8±2	86±3	12± 5	40±40	3.0±1.0	5.9±1.2

- Abbott Firestone Curves show roughness values
- Surface roughness in good agreement with SEM images

Ni-Cr₃C₂ Cross Section & Composition

(a) 50 µm 50 µm

1.7 μm Cr3C2 particles6 μm Cr3C2 particlesAbrasive Purple Brush

Average Atomic % Cr

General		Composition Population 1			Composition Population 2			
		Average	Average			Average		
Sample	R ²	(at.% of Cr)	Points	(at.% of Cr)	CoV	Points	(at.% of Cr)	CoV
1P-1	0.84	5.7±1.2	6	7.4±1.5	20%	26	5.3±0.6	12%
1P-2	0.81	5.0±1.4	11	6.3±1.7	27%	21	4.4±0.5	12%
6P-1	0.89	1.8±0.6	12	2.5±0.6	24%	20	1.6±0.3	18%
6P-2	0.73	1.3±1.0	12	2.2±1.1	52%	20	0.7±0.2	24%
1R-1	0.91	6.1±1.2	32	6.1±1.2	15%	0		
1R-2	0.89	5.6±1.3	3	8.6±0.1	1%	29	5.3±1.0	18%
6R-1	0.87	0.7±0.4	16	1.0±0.5	48%	16	0.4±0.1	32 <mark>%</mark>
6R-2	0.91	2.2±0.5	32	2.2±0.5	24%	0		
1W-1	0.91	3.5±0.4	32	3.5±0.4	12%	0		
1W-2	0.83	1.7±0.6	5	2.7±0.7	23%	27	1.5±0.3	18%
6W-1	0.97	2.1±0.5	32	2.1±0.5	23%	0		
6W-2	0.71	0.7±0.5	2	2.4±0.1	3%	30	0.6±0.3	47%

Ni-Cr₃C₂ Abrasive Wear: Taber Wear Testing

Taber Wear Index

TWI decreases with particle size8-10 TWI with 1 micron particle size

Taber Wear

- 15,000 cycles
- Resurface every 1000
 cycles
- CS-17 wheels
- Compared to...
 - Pure Nickel TWI 14 -20
 - Hard Chrome TWI 3.2

Ni-Cr₃C₂ TWI vs. Cr Composition & Particle Size

Wear Performance Correlation

- Increasing chromium content
- Particle size \rightarrow 1.7 µm
- Abrasive wrap

Co-Cr₃C₂ Evaluation

- 1) Evaluate tank and mixing parameter design
- 2) Establish processing parameters
 - a. Bath Loading $Cr_3C_2 40 500$ gr/lt
 - b. Current Density 0.3 1.20 A/cm2
 - c. Particle size \rightarrow 6 µm Cr₃C₂
- 3) Quantify Surface Performance Benefits

...Overall impact on composition, morphology, and wear

Co-Cr₃C₂ Cross Section & Particle Count

14 wt.% Cr₃C₂

Cobalt metal

Carbide particle

sifcoasc.com

Co-Cr₃C₂ Hardness & Temperature

Cr ₃ C ₂ wt.%	As deposited	400°C	750°C	815°C
12 – 15	442	505	498	485
25 – 30	418	485	476	482

Hardness (VHN) of $\text{Co-Cr}_3\text{C}_2$ as deposited and after 1 hour heat treatment

Carbon steel	Ti-6Al-4V	Co-plated		
150	330	360		

Co-Cr₃C₂ Oxidation Resistance

Before Heating

- Heated to 800° C for 30 hours
- Substrate: Steel
- Deposit Co-Cr3C2 15% wt% Cr3C2

After Heating

Co-Cr₃C₂Taber Wear Testing

Co-Cr₃C₂ Taber Wear @ Elevated Temperature

CoCr3C2 and Ti-6-4 samples heated to 400° C

RESULTS

≻Ti-6-4 → No change in TWI
 >Co-Cr3C2 → 50% decrease in TWI

Co-Cr₃C₂ Key Characteristics

Property	Unit	Brush Plated Co-Cr ₃ C ₂	Brush Plated Co	Ti-6Al- 4V	Carbon Steel
Cr ₃ C ₂	wt. %	10 - 50	0	0	0
Uniformity of Cr ₃ C ₂	wt.%	± 3	-	-	-
Microhardness	VHN	360 - 500	360	330	150
Hardness change after 400° C exposure	%	>+ 10 %	> - 10%	> - 5%	> - 15 %
Taber wear index	µg/cycle	8.0	17	21	16
Taber wear index after 400° C exposure	µg/cycle	4.0	15	21	17
Surface finish as deposited, Ra	μm	0.5 - 1.5	0.5 - 1.5	-	-

- Co-Cr₃C₂ MMC on Ni alloy Turbine Vane
- 20 wt.% Cr₃C₂

Future Work

- Further define Ni-WC and Ni-Cr₃C₂ key characteristics
 - Hardness, coefficient of friction, heating effects, etc...
- Focus 1 micron particle size and abrasive wrap materials
 - Evaluate bath loading for composition and wear properties
- Explore other nickel based electrolyte carriers

Acknowledgements

Dr. Luis Isern from Cranfield University Dr. Sid Clouser from SIFCO

Contact Us

SIFCO Applied Surface Concepts

See us at Booth 351

Phone: (216) 524-0099

www.sifcoasc.com

Danijela Milosevic-Popovich

dmilosevic@sifcoasc.com