% sifcoasc

Improved Process Capabilities for Groove Repair

Danijela Milosevic-Popovich

R&D Manager

Sur/Fin 2019

June 5, 2019

Who We Are

- SIFCO Applied Surface Concepts
 - Founded in 1959
 - Headquartered in Cleveland, Ohio, USA
 - Acquired as part of the Surface Coatings Division of Norman Hay in 2012.
 - 4 US and 3 European Locations
 - USA: Ohio, Texas, Connecticut, & Virginia
 - Europe: UK, France, & Sweden
- Norman Hay Group
 - Founded in 1940 doing Chromium Plating and Hard Anodizing
 - Headquartered in Coventry, UK
 - Ultraseal International, Surface Technology, and NHE

Overview

- What is Selective Plating (AKA Brush Plating)
- Specifications
- What is a groove?
 - Groove configurations
- Groove Plating Advancements
 - Case Studies
 - Challenges
- Conclusion/Future Work

What is Selective Plating/Brush Plating?

• The SIFCO Process® is a portable method of electroplating localized areas without the use of an immersion tank.

Key Requirements:

- . Workpiece
- 2. Power Pack
- 3. Plating Tools
- 4. Solution

Other:

- Solution Flow System
- Masking Materials
- Auxiliary Equipment

Selective Plating/Brush Plating

Surface Preparation

- Pre-Clean
- Electroclean
- Etch
- Desmutting
- Activation
- Preplate
- Plate

Selective Plating/Brush Plating Features

- Higher current density plating because of....
 - Higher metal concentrations
 - High solution velocity replenishment of metal ions at the surface
 - Brushing action disturbs the hydrodynamic boundary layer at the surface resulting in faster solution movement.
 - Hydrogen gas bubbles are removed by the brushing action and high solution velocity.
- Brushing action levels the deposit as it builds.
- Selective plating allows for easily controllable application of the coating just where it is needed on the part / component

Selective Plating Specifications

FINISHES	DESCRIPTIONS	MILITARY	AMS	FEDERAL/AMS REFE	RENCE	
Brush Plating	Selective Electrodeposition - US Air Force	MIL-STD-865				
Brush Plating	Selective Plating - US Navy	MIL-STD-2197 (SH)				
Brush Plating	Plating, Brush General	MIL-STD-865	2451			
Brush Plating Nickel	Nickel Brush Plating		2451/1	QQ-N-290 & AMS 2403		
Brush Plating Nickel	Nickel Low Stress, Hard Brush Plating		2451/2	AMS 2423		
Brush Plating Nickel	Nickel Low Stress, Low Hardness Brush Plating		2451/3	AMS 2424		
Brush Plating Cadmium	LHE Cadmium Brush Plating		2451/4	QQ-P-416 & AMS 2400/2401		
Brush Plating Chromium	Chromium Brush Plating		2451/5			
Brush Plating Copper	Copper Brush Plating		2451/6			
Brush Plating Nickel	Nickel Low Stress, Medium Hardness Brush Plating		2451/7	AMS 2423		
Brush Plating Silver	Silver Non-Cyanide Brush Plating		2451/8	QQ-S-365 & AMS 2412		
Brush Plating Zinc-Nickel			2451/9	AMS 2417		
Brush Plating Tin-Zinc			2451/10	AMS 2434		
Brush Plating Cobalt			2451/11			
Brush Plating Tin		MIL-T-10727*	2451/12	AMS 2408		
Brush Plating Silver	Silver Brush Plating		2451/13	QQ-S-365 & AMS 2412		
Brush Plating Nickel Tungsten			2451/14			
Nickel Plate	Plating, Nickel General		2403*	QQ-N-290*	American Airlines	
Nickel Plate, Hard			2423*		Bell Helicopter	
Nickel Plate, Soft			2424*		Boeing	
Copper Plate	Plating, Copper	MIL-C-14550	2418		British Aerospace	
Gold Plate	Plating, Gold	MIL-G-45204	2422		Douglas	
Cadmium Plate	Plating, Cadmium		2400/2401*		Dowty Aerospace	
Silver Plate	Silver Plating, Electrodeposited		2412*	QQ-S-365*	Goodrich	
Zinc-Nickel Plate	Plating, Zinc-Nickel Alloy		2417*		Gulfstream	
Tin-Zinc Plate	Plating, Tin-Zinc Alloy		2434*		Lucas Aerospace	
Tin Plate	Tin Plating, Electrodeposited	MIL-T-10727*	2408*		Messier Dowty	
Anodizina	Anodized Coatinos	MIL-A-8625*			Parker	
		TYPE I, II & III			Pratt & Whitney	
Tank plating standard. SIFCO	ASC does not perform tank plating, but manufactures	s many deposits that mee	t the performance r	equirements of the standard.	Rolls Royce - Alli	
					Sikorsky	
					TRW Aeronautica	

• MIL-STD-2197

• MIL-STD 865C

• AMS 2451C

MMERCIAL SPECIFICATIONS (PARTIAL LIST)

FW 1309

BAC 5664

DPS 9.89

PCS-2143

PWA 36953

SS 8443

LP 15

PS137

BAC 5849

DPS 9.89-1

PCS-2144

PWA 36960

SS 8481

HP 4-113

DPS 9.28

P12-16 BPS 4312

BAC 5854

BAe 146 P.S. 13113

PS118

LGPS 1102 GAMPS 6103 DPD 1000 PCS-2141

BPS 4511

SPOP 321

EPS 10245 SS 8494

SPD 1000

CITC	N A		nn
SIL	Jua	50.U	

Types of Grooves

- O-ring grooves
- Packing grooves
- Snap ring grooves
- Retaining ring grooves
- Fluid control
- Keyways
- Splines
- Threads
- Gears

 $P = Pitch = \frac{1}{n}$ d = Depth = .433P

1 = Flat = .25P

Groove Plating Objectives

In an ideal world...

- Uniform deposit along all surfaces
- No post machining

The Challenge...

- Maximize plating into internal corners
- Minimize build-up at high current density edges
- Can require multiple applications

Requires OPTIMIZED plating parameters!

The Advancements....

Brus	sh Plating	Wrap-Less Plating		
Traditional Brush Plating	Selective Areas Reduced CD Anode Masking	Reduced CD Selective Masking Reduced CD Reduced CD Selective Masking		
 High Current Density Non-uniform plating distribution Limited plating along internal radii Dendritic along 	 Less build-up along external edges Increased deposit throw along internal radii 	 Minimal build-up along external edges 3x more deposit throw along internal radii Improved deposit uniformity 		

external edges

- Poor efficiency and time consuming
- Poor thickness distribution
- Limited throwing power along radial areas
- Excessive deposit build-up along external edges

Case 1: Traditional Brush Plating

- Deposit: AeroNikl 250
- > OD Groove
 - Diameter 6 inch
 - Groove Dimensions: 1/2 in x 3/16 in
- Plating Parameters
 - CD: 3-6 ASI
 - Thickness: 5.5 mils (18 AH)
 - Anode: Ni Tube with PTW
- Results
 - Could not maintain constant current
 - Low thickness
 - Excessive build-up of dendritic deposit along top corners

B

- Numerous overloads and arcing during plating
- Not reliable or repeatable

sifcoasc.com

Case 1: Wrap-Less Groove Plating

- Deposit: AeroNikl 250
- > OD Groove
 - Diameter 6 inch
 - Groove Dimensions: 1/2 in x 3/16 in
- Plating Parameters
 - Thickness: 5.5 mils (18 AH)
 - CD: <1 ASI
 - Anode: Ni Tube NO Wrap
 - Selectively masked anode
- Results
 - Constant current maintained
 - Thickness: 8 mils after 8 AH of plating
 - Deposit build-up along external edges reduced
 - Good coverage along the internal radial areas

Case 1: Wrap-Less Groove Plating

Cross Section at 500x magnification

≻Groove Bottom Max Thickness at Center: ~8 mils

Internal Radius Thickness: ~ 1 mils

External Corner Thickness: ~ 15 mils

≻Throw Power into radius: ~10-12%

Case 2: Brush Plating Selective Areas

- Deposit: AeroNikl 575
- Groove Dimensions
 - Groove Width: ~1/4 inch
 - Groove Depth: 3/16 1/3 inches
 - Groove walls selectively plated
- Plating Parameters
 - Thickness: 5 13 mils
 - CD: 3 ASI
 - Anode: Dur-A-Form with RTW
 - Anodes selectively masked
 - Equipment Configuration
 - App. 1: Stationary part with moving anode
 - App 2: Stationary anode with rotating part

Case 2: Brush Plating Selective Areas – Anode Masking

sifcoasc.com

Case 2: Brush Plating Selective Areas

Groove 8

Case 3: Wrap-Less Groove Plating

- Deposit: AeroNikl 250
- > ID Groove
 - Diameter: 4.5 inch
 - Groove Dimensions: 9/32 x 5/32 in.
- Plating Parameters
 - Thickness: 5 30 mils
 - CD: <1 ASI
 - Anode: Wrap-less Dur-A-Form
 - Selectively masked anodes
 - Tight Tolerance Tooling:
 - Defined anode to cathode gaps
 - Equipment Configuration
 - Stationary part with rotating anodes

Case 3: Automated ID Plating, Rectifier Software & Data Logging

HMI/Software & Rectifier

Case 3: Wrap-Less Groove Plating

Masked Mock-up Grooves

Anode Fins seated in Grooves.

Solution flowed through anode.

Masked Anode Sides

sifcoasc.com

Case 3: Wrap-Less Groove Plating

Parameters Tested

- Anode to Cathode Gap
 - 0.0050 vs 0.075 inch
- Current Densities
 0.5, 1 ASI, and 3 ASI
- RPM

Increasing CD and Anode to Cathode Gaps...

- Diminished throw power 10-15%
- Thickness variation from side to side
- Rougher deposit

Case 3: Wrap-Less Groove Plating

- Lower current densities and decreasing anode to cathode gaps ...
 - Increased deposit throw power along internal radii by 3x
 - Reduced thickness variation from side to side
 - Smoother deposits allow for thicker deposits
 - Decreased deposit build-up along external edges

Conclusion & Future Work

Groove Considerations

- Groove Geometry
 - Location, depth, width
- Deposit Types & Specification Requirements
 - Deposit choice
 - Wear/Corrosion/Dimensional Restoration
 - Internal radius requirements, taper allowance, uniformity
 - Design modifications for chamfers and larger radii
- Post Finishing
 - Surface roughness
 - Machining

Plating Process Considerations

- Current Density
- Selective Masking
- Anode-to-Cathode Gap
- Anode & Fixture Design

Future Work/Considerations

- Continue to increase throw power into the corners
- Minimize machining in between applications
 - -Pulse Plating
 - -Additives

Acknowledgements

- Andy DeLeon Contract Service Manager Houston
- Derek Kilgore Mechanical Design Engineer
- Jeff McArthur Technical Service Rep
- Sarah Medeiros Corrosion Engineer
- Derek Vanek Technical Manager
- Teri Zarnesky Lab Technician

QUESTIONS?

US Headquarters SIFCO ASC 5708 E. Schaaf Rd Independence, Ohio 1-216-524-0099

info@sifcoasc.com

Danijela Milosevic-Popovich dmilosevic@sifcoasc.com

See us at Booth 330!

Brush Plating Small Features

- Deposit: Nickel 2080 on Al
- Groove Details
 - U-Channel & Dovetail
 - Groove Dimensions: 1/8 x 1/8 in.
- Plating Parameters
 - Thickness: 0.2 0.7 mils
 - CD: < 1 ASI
 - Two-step plating process
 - Anode selectively masked
 - Equipment Configuration
 - Rotating part with stationary anode

Brush Plating Small Features (U-Channel)

Groove Radius ~0.11 mil

