Published

Accelerated Aging Tests

Question: I recently experienced a failure on an accelerated aging test of a polyurethane coating system.

Share

Question:

I recently experienced a failure on an accelerated aging test of a polyurethane coating system. The test consisted of 24 days of humidity (90% relative humidity at 53° C), followed by 25 temperature cycles (+71– -45°C), followed by a repeat of the 24 day humidity exposure, followed by a repeat of the 25 temperature cycles. Damaged coating was observed after the second humidity exposure, and the coating failed after the second series of temperature cycling. Failure occurred between the topcoat (polyurethane per MIL-PRF-85285, Type I) and the coating beneath it, a polyurethane plural coating. Our paint experts think that the parameters of the aging test, specifically the +71°C of the temperature cycling, was too aggressive. They are concerned that it exceeds the glass transition temperature of the coatings. We’re trying to determine what the glass transition temperature of each coating is and may run the test again but adjust the temperature exposure accordingly so that it does not exceed the glass transition temperature. Is there something we should be looking at besides glass transition temperature? Is there some other critical property that affects the way the coatings respond to accelerated aging tests?

Answer:

Accelerated aging tests of organic coatings is difficult, for the coatings as well as the interpreter. These tests are usually designed by a committee, often resulting in; “if -40°C is a good lower limit, -45°C is better.” A coating’s physical properties such as its Glass Transition Temperature (T(g)) can play a significant part in test results.

The problem is not the T(g) of the polyurethane coatings. Your determination will show it is higher than 71°C (159.8°F). In fact, the continuous service temperature for polyurethane coatings is 121.11°C (250°F). Your problem may be caused by cracking and film delamination at or near the low temperature point, -45°C(-49°F), of the cycle. When I had a real job, we used to run a thermocycling test of -40° C- +100°C (-40°F-+212°F). Cracking failures of coatings usually occurred as the temperature was falling.

The fact that the topcoat separated from the primer indicates an inter-coat adhesion problem, since the coefficients of linear expansion for both coating should be the same. I suggest you have your paint experts look into the cause of the adhesion failure.

RELATED CONTENT

  • Masking for Surface Finishing

    Masking is employed in most any metal finishing operation where only a specifically defined area of the surface of a part must be exposed to a process. Conversely, masking may be employed on a surface where treatment is either not required or must be avoided. This article covers the many aspects of masking for metal finishing, including applications, methods and the various types of masking employed.

  • Phosphate Conversion Coatings

    Types of phosphate conversion coatings, how to apply them, and their specific functions.

  • Curing Oven Basics

    Simply heating up the substrate does not cure the coating. There are many variables to consider when choosing the best cure oven for your application...