The Voice of the Finishing Industry since 1936

  • PF Youtube
  • PF Facebook
  • PF Twitter
  • PF LinkedIn
7/1/2000 | 9 MINUTE READ

Powder Coating in the Year 2000

Facebook Share Icon LinkedIn Share Icon Twitter Share Icon Share by EMail icon Print Icon

A quick take on the advantages of powder coating, the basics of the process and the markets served by powder coating...


Facebook Share Icon LinkedIn Share Icon Twitter Share Icon Share by EMail icon Print Icon

Powder coating remains the fastest growing industrial finishing method in North America, representing about 15% of the total industrial finishing market. There are about 5,000 powder coating operations in North America, applying powder to a countless array of products for a high-quality and durable finish that resists scratches, corrosion, abrasion and chemicals. The powder coating process also maximizes production, cuts costs, improves efficiency and offers maximum compliance with increasingly stringent environmental regulations.

Advantages of Powder Coating

Environmental advantages have led the way for powder coating conversion in North America. Because powder coating contains no solvents, the process emits negligible, if any, VOCs into the atmosphere and does not require venting, filtering or solvent recovery systems. Exhaust air from the coating booth can be safely returned to the coating room, and less oven air is exhausted to the outside, making powder coating a safer, cleaner and less energy intensive finishing alternative.

Since it is a dry powder, up to 98% of coating overspray can be readily retrieved and reused. The unused powder is reclaimed by a recovery unit and returned to a feed hopper for recirculation through the system. The waste that results is negligible and can be disposed of easily and economically.

Greater efficiency is achieved because powder coating requires no drying or flash-off time, parts can be racked closer together on a conveyor and more parts can be coated automatically. Powder coating does not run, drip or sag, resulting in significantly lower reject rates.

While these environmental and operational advantages translate to economical advantages, there are additional cost savings with powder coating:

  • Minimum operator training and supervision;
  • Lack of fumes;
  • Reduced housekeeping problems;
  • Minimum contamination of clothing; and
  • Easier compliance with federal and state regulations.

How Powder Coating Works

Powder coating was introduced in North America about 40 years ago. It is a dry finishing process that uses finely ground particles of pigment and resin that are electrostatically charged and sprayed onto electrically grounded parts. The charged powder particles adhere to the parts and are held there until melted and fused into a smooth coating.

Powder Materials

There are two types of powder coatings: thermoplastic and thermoset. A thermoplastic powder coating is one that melts and flows when heat is applied but continues to have the same chemical composition once it cools and solidifies. Thermoset powder coatings also melt when exposed to heat. After they flow into a uniform thin layer, however, they chemically cross-link within themselves or with other reactive components. The final coating has a different chemical structure than the basic resin, is heat stable and, unlike thermoplastic powder after curing, it will not soften back to the liquid phase when reheated.


Parts to be powder coated should be exposed to a pretreatment operation to ensure that the surface to be coated is clean and free of any contaminants. The pretreatment process is normally conducted in a series of spray chambers where alkaline cleaners, iron or zinc conversion coatings and rinses are applied. Parts of various size or shape may be cleaned with pressurized and/or heated sprays. Dip tanks may be used instead of spray for some applications. Powder coating lines usually incorporate a phosphate application step that adds corrosion protection and improves coating adhesion.

Pretreatments most often used in powder coating are iron phosphate for steel, zinc phosphate for galvanized or steel substrates and chrome phosphate for aluminum substrates. After the parts have passed through all of the pretreatment steps, they are normally dried in a low-temperature dry-off oven. After drying, the parts are ready to be powder coated.

New methods in pretreatment are being introduced. Improved alkaline metal iron phosphates plus nonchrome seal systems yield improved corrosion protection on steel, galvanized steel and aluminum alloys. Improved nickel-free zinc phosphates avoid the environmental issues related to nickel use and disposal. New dry-in-place pretreatment products, as a seal rinse over an alkaline metal phosphate or as the sole pretreatment to a clean metal substrate, can reduce the number of stages required before powder coating application. The use of an autodeposition coating as a pretreatment or primer for powder coating eliminates phosphates, has a low temperature curing requirement of 210F and is an environmentally friendly pretreatment option. The powder applied after this pretreatment method must also be cured at similarly low temperatures, less than 250F, in order to maintain its performance. Also, it works well with UV-curable powder coatings.

Powder Application

The powder coating application process uses four types of equipment: powder delivery; electrostatic spray gun; spray booth; and powder recovery.

The delivery system consists of a powder storage container or feed hopper and a pumping device that transports a mixture of powder and air through hoses or feed tubes. Some feed hoppers vibrate to help prevent clogging or clumping of powders prior to entry into the transport lines.

Electrostatic powder spray guns direct the flow of powder; control the pattern size, shape and density of the spray as it is released from the gun; charge the powder being sprayed; and control the deposition rate and location of powder on the target. Spray guns can be manual or automatic.

The most common application method uses “Corona charging” spray guns, which generate a high-voltage, low-amperage electrostatic field between the electrode and the product being coated. Powder particles that pass through the ionized electrostatic field at the tip of the electrode become charged and are deposited on the electrically grounded surface of the part.

The powder particles in a “Tribocharging” spray gun receive an electrostatic charge because of friction that occurs when powder particles rub a solid insulator or conductor inside the gun. The resulting charge is accomplished by stripping electrons from the powder, producing a positively charged powder. Because there is no electrostatic field, the charged particles of powder migrate toward the grounded part and are free to deposit in an even layer over the entire surface of the part, improving deposition in recesses.

The powder bell, or powder turbine, is another application method. With this method, the turbine rotates an enclosed powder bell head. Powder is delivered to the bell head and ejected by centrifugal force. The powder passes through an electric field between the rotating bell head or an externally mounted electrode and the grounded object to be coated or a counter electrode positioned behind the bell’s head. The powder is subject to the normal Corona charging mechanism, ejecting the powder evenly over a large area.

The Tribo disk features a nonrotating disk positioned vertically inside an omega loop. Parts are conveyed through the loop as the disk oscillates up and down, applying overlapping layers of powder coating on the part’s surface. The tribostatic charging method is employed, and the disk forms a uniform, horizontal spray pattern of about 2.5 ft in diameter.

The use of oscillators, reciprocators and robots to control spray equipment reduces labor costs and provides more consistent coverage. Gun triggering, or triggering the gun on and off using a device that can sense when the target is properly positioned, will reduce overspray, lowering material and maintenance costs.

The powder spray booth is designed to safely contain the powder so that overspray can’t migrate into other areas. The entrance and exit openings must be properly sized to allow clearance of the largest product part. The airflows through the booth must be sufficient to channel all overspray to the recovery system but not so forceful that they disrupt powder deposition and retention on the part. If one booth is to be used for multiple colors, the booth interior should be free of narrow crevices, seams and irregular surfaces that would be difficult to clean, especially if collected overspray is to be recycled.

The batch booth is designed for coating individual parts or groups of parts. Conveyorized booths are designed for the continuous coating of product of various shapes and sizes on an overhead conveyor line in medium- to high-production operations.

The powder recovery system makes use of cyclone cartridge filter modules that can be dedicated to each color and easily removed and replaced when a color change is needed. Equipment manufacturers have made significant design improvements in powder spray booths that allow color changes to be made with minimal downtime and recovery of a high percentage of the overspray, which can raise powder use to nearly 100%.


There are three basic oven types normally used in the curing of powder-coated parts: convection; infrared; or a combination of the two. Convection ovens can be either gas or electric. Air is heated and circulated inside the oven around the powder coated parts. The parts attain the temperature within the oven.

Infrared (IR) ovens, using either gas or electricity as their energy source, emit radiation in the IR wavelength band. This radiated energy is absorbed by the powder and the substrate immediately below the powder, but the entire part need not be heated to cure temperature. This allows a relatively rapid heat rise, causing the powder to flow and cure when exposed for a sufficient time.

Combination ovens generally use IR as the first zone to melt the powder quickly. The following convection zone can then use rather high velocity currents since there is no danger of disturbing the powder. These higher velocities permit faster heat transfer and a shorter cure time.

Markets and Uses

Powder coatings are now used on hundreds of parts and products with technological breakthroughs in powder materials and application processes continually expanding the list. Almost all metal patio furniture is currently powder coated along with the majority of all metal display racks, store shelving and shop fixtures.

The appliance industry is the largest single market sector for thermosetting powders. Current uses include refrigerators, washer tops and lids, dryer drums, range housings, dishwashers, microwave oven cavities and freezer cabinets. As porcelain replacement powders become further developed, the appliance market will continue to grow.

The automotive industry currently uses powder coatings on wheels, bumpers, hubcaps, door handles, decorative trim, radiators, engine blocks and numerous under-the-hood parts and components. Powder is used by some manufacturers for the exterior body intermediate coat, or the primer surfacer. The most dramatic development in the auto industry in recent years is the use of clear powder coatings over automotive exterior basecoats. These powder clearcoats are applied by some European auto manufacturers, such as BMW and Volvo.

The architectural and building market powder coats aluminum extrusions used on frames for windows and doors and modular furniture. Because of the excellent durability of powder coatings, many highway and building projects use powder coating on light poles, guardrails, posts and fencing.

There are everyday uses for powder-coated products, such as lighting fixtures, antennas and electrical components.

Farmers have powder coated tractors and agricultural equipment. Fitness buffs use ski poles and bindings, golf clubs and golf carts, bicycles, exercise equipment and snowmobiles that are powder coated. Office workers use powder coated file drawers, computer cabinets, pens and mechanical pencils and other desk accessories. Parents have powder coated baby strollers, cribs, metal toys and wagons. In addition, homeowners have lawn mowers, snow blowers, barbecue grills, patio furniture, garden tools, electronic components, toolboxes and fire extinguishers that benefit from a powder coated finish.

New applications for powder coating are arising all the time, with new developments in powder coating materials and new methods of applying powder leading to uses that were unfathomable just a few years ago.