Improved Process Capabilities for Groove Repair

Danijela Milosevic-Popovich
R&D Manager
Sur/Fin 2019
June 5, 2019
Who We Are

• SIFCO Applied Surface Concepts
 • Founded in 1959
 • Headquartered in Cleveland, Ohio, USA
 • Acquired as part of the Surface Coatings Division of Norman Hay in 2012.
 • 4 US and 3 European Locations
 • USA: Ohio, Texas, Connecticut, & Virginia
 • Europe: UK, France, & Sweden

• Norman Hay Group
 • Founded in 1940 doing Chromium Plating and Hard Anodizing
 • Headquartered in Coventry, UK
 • Ultraseal International, Surface Technology, and NHE
Overview

• What is Selective Plating (AKA Brush Plating)
• Specifications
• What is a groove?
 • Groove configurations
• Groove Plating Advancements
 • Case Studies
 • Challenges
• Conclusion/Future Work
What is Selective Plating/Brush Plating?

- The SIFCO Process® is a portable method of electroplating localized areas without the use of an immersion tank.

Key Requirements:

1. Workpiece
2. Power Pack
3. Plating Tools
4. Solution

Other:

- Solution Flow System
- Masking Materials
- Auxiliary Equipment
Selective Plating/Brush Plating

Surface Preparation
- Pre-Clean
- Electroclean
- Etch
- Desmutting
- Activation
- Preplate
- Plate
Selective Plating/Brush Plating Features

- Higher current density plating because of:
 - Higher metal concentrations
 - High solution velocity replenishment of metal ions at the surface
 - Brushing action disturbs the hydrodynamic boundary layer at the surface resulting in faster solution movement.
 - Hydrogen gas bubbles are removed by the brushing action and high solution velocity.

- Brushing action levels the deposit as it builds.

- Selective plating allows for easily controllable application of the coating just where it is needed on the part / component
Selective Plating Specifications

<table>
<thead>
<tr>
<th>FINISHES</th>
<th>DESCRIPTIONS</th>
<th>MILITARY</th>
<th>AMS</th>
<th>FEDERAL/AMS REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brush Plating</td>
<td>Selective Plating - US Navy</td>
<td>MIL-STD-2197</td>
<td>G-4</td>
<td></td>
</tr>
<tr>
<td>Brush Plating</td>
<td>Plating, Brush General</td>
<td>MIL-STD-865</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brush Plating Nickel</td>
<td>Nickel Brush Plating</td>
<td>2461/1</td>
<td></td>
<td>QQ-N-290 & AMS 2403</td>
</tr>
<tr>
<td>Brush Plating Nickel</td>
<td>Nickel Low Stress, Hard Brush Plating</td>
<td>2461/2</td>
<td></td>
<td>AMS 2423</td>
</tr>
<tr>
<td>Brush Plating Nickel</td>
<td>Nickel Low Stress, Low Hardness Brush Plating</td>
<td>2461/3</td>
<td></td>
<td>AMS 2424</td>
</tr>
<tr>
<td>Brush Plating Cadmium</td>
<td>LHE Cadmium Brush Plating</td>
<td>2461/4</td>
<td></td>
<td>QQ-P-416 & AMS 2400/2401</td>
</tr>
<tr>
<td>Brush Plating Chromium</td>
<td>Chromium Brush Plating</td>
<td>2461/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brush Plating Copper</td>
<td>Copper Brush Plating</td>
<td>2461/6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brush Plating Nickel</td>
<td>Nickel Low Stress, Medium Hardness Brush Plating</td>
<td>2461/7</td>
<td></td>
<td>AMS 2403</td>
</tr>
<tr>
<td>Brush Plating Silver</td>
<td>Silver Non-Cyanide Brush Plating</td>
<td>2451/8</td>
<td></td>
<td>QQ-S-365 & AMS 2412</td>
</tr>
<tr>
<td>Brush Plating Zinc-Nickel</td>
<td>Zinc-Nickel Brush Plating</td>
<td>2451/9</td>
<td></td>
<td>AMS 2417</td>
</tr>
<tr>
<td>Brush Plating Tin-Zinc</td>
<td>Tin-Zinc Brush Plating</td>
<td>2451/10</td>
<td></td>
<td>AMS 2434</td>
</tr>
<tr>
<td>Brush Plating Cobalt</td>
<td>Cobalt Brush Plating</td>
<td>2451/11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brush Plating Tin</td>
<td>Tin Brush Plating</td>
<td>2451/12</td>
<td></td>
<td>AMS 2408</td>
</tr>
<tr>
<td>Brush Plating Silver</td>
<td>Silver Brush Plating</td>
<td>2451/13</td>
<td></td>
<td>QQ-S-365 & AMS 2412</td>
</tr>
<tr>
<td>Brush Plating Nickel Tungsten</td>
<td>Nickel Tungsten Plating</td>
<td>2481/14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel Plate</td>
<td>Plating, Nickel General</td>
<td>2403*</td>
<td></td>
<td>QQ-N-290*</td>
</tr>
<tr>
<td>Nickel Plate, Hard</td>
<td>Plating, Hard</td>
<td>2423*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel Plate, Soft</td>
<td>Plating, Soft</td>
<td>2424*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper Plate</td>
<td>Plating, Copper</td>
<td>MIL-G-14600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gold Plate</td>
<td>Plating, Gold</td>
<td>MIL-G-40204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium Plate</td>
<td>Plating, Cadmium</td>
<td>2402/2401*</td>
<td></td>
<td>QQ-S-365*</td>
</tr>
<tr>
<td>Silver Plate</td>
<td>Plating, Silver Electrodeposited</td>
<td>2412*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc-Nickel Plate</td>
<td>Plating, Zinc-Nickel Alloy</td>
<td>2417*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin-Zinc Plate</td>
<td>Plating, Tin-Zinc Alloy</td>
<td>2434*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin Plate</td>
<td>Tin Plating, Electrodeposited</td>
<td>2408*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anodizing</td>
<td>Anodized Coatings</td>
<td>MIL-A-8625* TYPE I, II & III</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Tank plating standard. SIFCO ASC does not perform tank plating, but manufactures many deposits that meet the performance requirements of the standard.

- **MIL-STD-2197**
- **MIL-STD 865C**
- **AMS 2451C**

Commercial Specifications (Partial List)

<table>
<thead>
<tr>
<th>Company</th>
<th>P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Airlines</td>
<td>P12-16</td>
</tr>
<tr>
<td>Ball Helicopter</td>
<td>BRS 8111</td>
</tr>
<tr>
<td>Boeing</td>
<td>BAC 5064</td>
</tr>
<tr>
<td>British Aerospace</td>
<td>BAe 146</td>
</tr>
<tr>
<td>Douglas</td>
<td>FG 13113</td>
</tr>
<tr>
<td>Dowty Aerospace</td>
<td>PS118</td>
</tr>
<tr>
<td>Goodrich</td>
<td>LGPS 1102</td>
</tr>
<tr>
<td>Gulfstream</td>
<td>GAMPS 9003</td>
</tr>
<tr>
<td>Lucas Aerospace</td>
<td>DPD 1000</td>
</tr>
<tr>
<td>Massier Dowty</td>
<td>PSG-2101</td>
</tr>
<tr>
<td>Parker</td>
<td>EPS 5011</td>
</tr>
<tr>
<td>Pratt & Whitney</td>
<td>GPOP 82</td>
</tr>
<tr>
<td>Rolls Royce - Allison</td>
<td>EPS 10245</td>
</tr>
<tr>
<td>Sikorsky</td>
<td>SS 8494</td>
</tr>
<tr>
<td>TRW Aeronautical Systems</td>
<td>SPD 1000</td>
</tr>
</tbody>
</table>
Types of Grooves

- O-ring grooves
- Packing grooves
- Snap ring grooves
- Retaining ring grooves
- Fluid control
- Keyways
- Splines
- Threads
- Gears
Groove Plating Objectives

In an *ideal world*…

• Uniform deposit along all surfaces
• No post machining

The Challenge…

• Maximize plating into internal corners
• Minimize build-up at high current density edges
• Can require multiple applications

Requires OPTIMIZED plating parameters!
The Advancements....

Brush Plating

Traditional Brush Plating
- High Current Density
- Non-uniform plating distribution
- Limited plating along internal radii
- Dendritic along external edges

Selective Areas
- Reduced CD Anode Masking
- Less build-up along external edges
- Increased deposit throw along internal radii

Wrap-Less Plating

Reduced CD
- Selective Masking
- Minimal build-up along external edges
- 3x more deposit throw along internal radii
- Improved deposit uniformity

Tight Tolerance Tooling
- Reduced CD Selective Masking
Traditional Selective Plating/Brush Plating

- Poor efficiency and time consuming
- Poor thickness distribution
- Limited throwing power along radial areas
- Excessive deposit build-up along external edges
Case 1: Traditional Brush Plating

- Deposit: AeroNikl 250
- OD Groove
 - Diameter 6 inch
 - Groove Dimensions: 1/2 in x 3/16 in
- Plating Parameters
 - CD: 3-6 ASI
 - Thickness: 5.5 mils (18 AH)
 - Anode: Ni Tube with PTW
- Results
 - Could not maintain constant current
 - Low thickness
 - Excessive build-up of dendritic deposit along top corners
 - Numerous overloads and arcing during plating
 - Not reliable or repeatable
Case 1: Wrap-Less Groove Plating

➢ Deposit: AeroNikl 250

➢ OD Groove
 • Diameter 6 inch
 • Groove Dimensions: 1/2 in x 3/16 in

➢ Plating Parameters
 • Thickness: 5.5 mils (18 AH)
 • CD: <1 ASI
 • Anode: Ni Tube NO Wrap
 • Selectively masked anode

➢ Results
 • Constant current maintained
 • Thickness: 8 mils after 8 AH of plating
 • Deposit build-up along external edges reduced
 • Good coverage along the internal radial areas
Case 1: Wrap-Less Groove Plating

Cross Section at 500x magnification

- Groove Bottom Max Thickness at Center: ~8 mils
- Internal Radius Thickness: ~1 mils
- External Corner Thickness: ~15 mils
- Throw Power into radius: ~10-12%
Case 2: Brush Plating Selective Areas

- Deposit: AeroNikl 575

- Groove Dimensions
 - Groove Width: ~1/4 inch
 - Groove Depth: 3/16 – 1/3 inches
 - Groove walls selectively plated

- Plating Parameters
 - Thickness: 5 - 13 mils
 - CD: 3 ASI
 - Anode: Dur-A-Form with RTW
 - Anodes selectively masked

- Equipment Configuration
 - App. 1: Stationary part with moving anode
 - App 2: Stationary anode with rotating part
Case 2: Brush Plating Selective Areas – Anode Masking
Case 2: Brush Plating Selective Areas

Results
- Plated to size, required no post machining
- Deposit is thicker at the bottom of the groove compared to the top of the groove
Case 3: Wrap-Less Groove Plating

- Deposit: AeroNikl 250
- ID Groove
 - Diameter: 4.5 inch
 - Groove Dimensions: 9/32 x 5/32 in.
- Plating Parameters
 - Thickness: 5 – 30 mils
 - CD: <1 ASI
 - Anode: Wrap-less Dur-A-Form
 - Selectively masked anodes
 - Tight Tolerance Tooling:
 - Defined anode to cathode gaps
 - Equipment Configuration
 - Stationary part with rotating anodes
Case 3: Automated ID Plating, Rectifier Software & Data Logging

HMI/Software & Rectifier
Case 3: Wrap-Less Groove Plating

Anode Fins seated in Grooves.
Solution flowed through anode.

Masked Mock-up Grooves
Masked Anode Sides
Case 3: Wrap-Less Groove Plating

- **Parameters Tested**
 - Anode to Cathode Gap
 - 0.0050 vs 0.075 inch
 - Current Densities
 - 0.5, 1 ASI, and 3 ASI
 - RPM

- **Increasing CD and Anode to Cathode Gaps...**
 - Diminished throw power 10-15%
 - Thickness variation from side to side
 - Rougher deposit
Case 3: Wrap-Less Groove Plating

- Lower current densities and decreasing anode to cathode gaps …
 - Increased deposit throw power along internal radii by 3x
 - Reduced thickness variation from side to side
 - Smoother deposits allow for thicker deposits
 - Decreased deposit build-up along external edges
Wrap-Less Groove Plating – Data Logging

Constant Current

Increasing voltage variation

Voltage
Wrap-Less Groove Plating
Conclusion & Future Work

Groove Considerations

• Groove Geometry
 - Location, depth, width
• Deposit Types & Specification Requirements
 - Deposit choice
 - Wear/Corrosion/Dimensional Restoration
 - Internal radius requirements, taper allowance, uniformity
 - Design modifications for chamfers and larger radii
• Post Finishing
 - Surface roughness
 - Machining

Plating Process Considerations

• Current Density
• Selective Masking
• Anode-to-Cathode Gap
• Anode & Fixture Design

Future Work/Considerations

• Continue to increase throw power into the corners
• Minimize machining in between applications
 - Pulse Plating
 - Additives
Acknowledgements

- Andy DeLeon – Contract Service Manager Houston
- Derek Kilgore – Mechanical Design Engineer
- Jeff McArthur – Technical Service Rep
- Sarah Medeiros – Corrosion Engineer
- Derek Vanek – Technical Manager
- Teri Zarnesky – Lab Technician
QUESTIONS?

US Headquarters
SIFCO ASC
5708 E. Schaaf Rd
Independence, Ohio
1-216-524-0099
info@sifcoasc.com

Danijela Milosevic-Popovich
dmilosevic@sifcoasc.com

See us at Booth 330!
Brush Plating Small Features

➢ Deposit: Nickel 2080 on Al

➢ Groove Details
 • U-Channel & Dovetail
 • Groove Dimensions: 1/8 x 1/8 in.

➢ Plating Parameters
 • Thickness: 0.2 – 0.7 mils
 • CD: < 1 ASI
 • Two-step plating process
 • Anode selectively masked
 • Equipment Configuration
 - Rotating part with stationary anode
Brush Plating Small Features (U-Channel)

- Face ~0.4 mil
- Groove Corner ~1mil
- Bottom of Groove ~0.6 mil
- Groove Radius ~0.11 mil