Correlation Between Electrochemical Behavior and Neutral Salt Fog Corrosion on TCP Coated AA2024

DR. CATHERINE MUNSON DR. SJON WESTRE CHEMEON SURFACE TECHNOLOGY

Outline

- Experimental purpose
- Aluminum alloy 2024-T3
- Background of preventing corrosion on aluminum
- Background of salt fog and electrochemical measurements
- Salt fog and electrochemical results
- Summary and conclusions

Purpose

Neutral salt fog corrosion test

- link
- Current standard to test performance = ASTM B117
 - Poor correlation with actual field performance, but good process control check
 - Testing to failure requires up to 1,000 hours (more than one month)
 - Difficult to thoroughly and quantitatively compare processes

Electrochemical analysis

- New method to test performance
 - Good correlation with field performance on other metals^{1,2}
 - Good correlation with salt fog when flaws introduced to coatings on aluminum³
 - ▶ Fast (hours to days)
 - Easily and comprehensively compare and rank processes, different coatings, different base metals
 - Has mainly been tested/linked with field tests with primed/painted panels with or without scribes
- 1) J. Bundy, K & Bricka, M. (2019). AN ELECTROCHEMICAL APPROACH FOR INVESTIGATING CORROSION OF SMALL ARMS MUNITIONS IN FIRING RANGES.
- 2) Lins, Vanessa, Gomes, Edelize Angelica, Costa, Cíntia Gonçalves, Castro, Maria das Mercês Reis, & Carneiro, Rogerio Augusto. (2018). Corrosion behavior of experimental nickelbearing carbon steels evaluated using field and electrochemical tests. REM - International Engineering Journal, 71(4), 613-620.

 S. R. Taylor, Francesco Contu, C. N. Hunter, and L. Fenzy The Prediction of Long-term Coating Performance from Short-term Electrochemical Data, Part I. Inhibited Aerospace Coating Systems - Comparison to Salt Spray Data, Electrochemical Society Transactions 2010 24: 185-196.

Purpose: New Process Control Check

- Link electrochemical analysis to neutral salt fog testing for coated but undamaged metals
- Optimize new pretreatment processes more quickly and efficiently with electrochemical analysis
- Future uses in new product development and in new pretreatment process development
 - Save time and money on extensive salt fog testing or developing new products/processes that do not perform well in field testing

Aluminum Alloy 2024-T6

Difficulties with 2000 Series Alloys

- High copper content alloyed with the base aluminum
 - Forms large copper sites on surface which tend to coat unevenly
 - Forms galvanic cell between Cu and Al, promoting Al degradation
- ► High levels of corrosion compared to other aluminum alloys
- More difficult to coat uniformly and homogeneously
- Requires more careful surface preparation and coating formation than any other aluminum alloy to produce the best, most corrosion resistant conversion coatings

Catastrophic Aluminum Failures

- Corrosion of aluminum on vehicles tends to be cosmetic rather than catastrophic like steel corrosion was in the past
 - Early implementation of Al hoods on Fords had galvanic corrosion/paint delamination due to direct connection with steel brackets
- More catastrophic failures seen with aerospace applications of aluminum
 - Crash in 1992 due to corrosion pitting and fatigue at engine fuse pins connecting strut to wing
 - Crash in 1999 due to fuselage skin panels disbonding and fatigue cracking at lap joints
 - Crash in 2005 due to losing a wing from corrosion causing fatigue cracks on the wing/fuselage junction brackets

¹⁾ https://web.archive.org/web/20111019164744/

²⁾ http://www.ntsb.gov/news/2005/051222a.htm

³⁾ https://corrosion-doctors.org/Aircraft/Aloha.htm

Background- Preventing Corrosion on Aluminum Alloys

Element (Weight %)	Cu	Fe	Mg	Mn	Si	Zn	Ti	Cr	AI
2024-T3	3.8-4.9	0.5	1.2-1.8	0.3-0.9	0.5	0.25	0.15	0.1	90.9-93.7

Aluminum Alloy Corrosion

European Union Directives (27 EU Nations)

- Registration, Evaluation, Authorization, and restriction of Chemicals (REACh) ban on hexavalent chromium in European Union
 - Prohibition and regulation of use due to toxicity and human health risks
 - Three major governing EU bodies - European Parliament, the Council of the European Union, and the Commission of the European Community
 - ▶ Effective 9/21/2017

- ► End of Life Vehicle (ELV)
 - Four heavy metals hexavalent chromium (~ 70%), cadmium, lead and mercury.
 - Effective 7/1/2007
- Restriction of Hazardous Substance (RoHS)
 - Hexavalent chromium, cadmium, lead, mercury, PBB (polybrominated biphenyls) and PBDE (polybrominated diphenyl ether)
 - ▶ Effective 7/1/2006
- Waste Electrical & Electronic Equipment (WEEE)
 - ► Effective 12/31/2006

TCP Film Composition and Corrosion Protection

TCP Film Composition and Corrosion Protection

Background- Salt Fog and Electrochemical Measurements

Salt Fog Setup

Following ASTM B-117, MIL-DTL-5541, and MIL-DTL-81706

- ▶ 5 ± 1% by mass NaCl fog at pH 6.85 ± .35
- 35 ± 2°C inside the chamber, dispersing fog at 1.5 ± 0.5 mL/hour
- Chamber performance checked daily (minus weekends/holidays) with chamber open for < 1 hour
- Panels set up in chamber at 6° from vertical, no salt spray directly impinging the panels
- Time in salt fog and number of pits recorded upon failure (one panel with >5 pits or >15 pits over all 5 panels exposed)

Electrochemical Analysis Setup

Working electrode= aluminum alloy 2024-T3 coated with TCP-HF processed with iron based deoxidizer

- Counter electrode = carbon rod
- Reference electrode = saturated calomel
- Electrolyte = 1 M NaCl or 10% v/v Harrison's solution (3.5% ammonium sulfate + 0.5% NaCl)
- Run inside Faraday cage to prevent noise interference
- Using Gamry potentiostat and fitting software

Experimental Plan

- More aggressive pretreatments cause poor coating formation and performance
- Full comparison of best and worst practices with an aggressive pretreatment condition
 - Iron-based deoxidizer: more aggressive pretreatment than recommended
- Best process = shortest salt fog time to failure with the least pits
- Worst process = longest salt fog time to failure with the most pits
- Want to link the best and worst performing processes (via salt fog testing) to the electrochemical behavior
 - Should show the same trends and rankings

24 hour cure time (ambient temperature away from coating line) before salt fog or electrochemical testing

Salt Fog and Electrochemical Results

Salt Fog Results

Failure - >5 pits on one panel or >15 pits over all 5 panels

Panel name	Salt Spray Time to Failure (hours)	Pits at 336 hours, passing MIL-DTL-81706 requirements?	Pits per panel (total pits)		
T1	336	7, failed	5+, 1, 1, 0, 0 (7)		
T2	840	0, passed	5+, 5+, 0, 0, 0 (16)		
Т3	336	25+, failed	5+, 5+, 5+, 5+, (25+)		
T4	336	5+, failed	5+, 0, 0, 0, 0 (10+)		

Open Circuit Potential Measurements

- Measure voltage between reference electrode and working electrode (coated aluminum panel) due to formation of double layer at the working electrode surface
 - Potential due to rearrangement of water molecules and salt ions at the coated metal surface because of the naturally occurring charge
- Less negative potential indicates better corrosion resistance and a lower initial charge on the coated metal surface

Aqueous Electrolyte-Electrode Interface: Gouy-Chapman-Stern Model

> Aqueous Electrolyte-Electrode Interface: Gouy-Chapman-Stern Model

22

Bard, A. J.; et. al. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley and Sons, Inc.: New York, 2001, pp 226-260.

Electrochemistry- Open Circuit Potential in 1 M NaCl

Electrochemistry- Open Circuit Potential in 1 M NaCl

Electrochemistry- Open Circuit Potential in Harrison's Solution

Electrochemical Impedance Spectroscopy Measurements

- Current due to applied sine wave potential measured and converted to a resistance with a frequency component called *impedance*
 - Fit to a representative circuit descriptive of the electrode/electrolyte interface
- Resistance to current flow (polarization resistance) indicates the resistance to corrosion
 - ► Higher resistance = less corrosion

Fitting Nyquist Plots to Equivalent Circuits

27

- R_e = electrolyte resistance = e^- flow resistance through salt solution
- C_{dl} = double layer capacitance = charge held in double layer interface
- R_{P} = polarization resistance = e⁻ flow resistance through double layer (or double layer and coating)

 R_{po} = pore resistance = e⁻ flow resistance through pores in coating C_{co} = coating capacitance = charge held in coating

Fitting Nyquist Plots to Equivalent Circuits 28

 R_{p} = polarization resistance = diameter of semi-circle

Electrochemistry- Nyquist Plots and Equivalent Circuit Fitting in 1 M NaCl

n = 3, presented as average ± standard error of the mean

Larger semicircle = more corrosion resistance

Electrochemistry- Nyquist Plots and Equivalent Circuit Fitting- Harrison's Solution

Tafel Measurements

- Applied potential slowly ramped, going from a point more negative than the open circuit potential to a point more positive than the open circuit potential to induce corrosion
 - More negative potentials = oxygen reduction
 - More positive potentials = aluminum oxidation
- Differences in the current flow indicate the performance of the coated metal working electrode
 - ► Lower current = less corrosion

Fitting Tafel Data with Butler-Volmer Equation

I = measured current E = applied potential E_{corr} = corrosion potential i_{corr} = corrosion current b_a = anodic Tafel slope b_c = cathodic Tafel slope

Electrochemistry- Tafel Plots with Butler-Volmer Fitting in 1 M NaCl

n = 3, presented as average ± standard error of the mean

34

Lower current flow, more positive plateau = more corrosion resistance

Salt Fog Results Compared to Electrochemistry- 1M NaCl

Polarization Coating Salt Spray Time **Open Circuit** Corrosion Panel Corrosion **Resistance** Capacitance (# pits) Potential (V) Current (µA) Potential (V) name (Farads) (**k**Ω) 2.9(8)E-5 3(1) -0.652(11)**T1** 336 hr (7) -0.7210(11)15(5)840 (0 at 336, 16 at **T2** -0.644(11)28(5) 1.9(8)E-5 0.97(10)-0.671(16)failure) **T3** 336 (20+) -0.771(25)9(1) 5(1)E-5 2.2(5)-0.753(24)336 (5+ on one **T4** -0.765(16)14(4)3(1)E-5 0.9(3)-0.720(23)panel) mean(standard error in the last digits)

Summary and Conclusions

Electrochemical Analysis Vs Salt Fog for Establishing Best Operating Parameters

Salt Fog

- Indicated process T2 performed the best, with the longest salt spray time before failure
- Indicated process T3 performed the worst, with the shortest salt spray time and the largest amount of pits in that time
 - Processes T1 and T4 showed the same short salt spray time with fewer pits

Electrochemistry

- All measurements line up well with salt spray performance
 - Open circuit
 - Most positive for the best process and most negative for the worst

- EIS: polarization resistance
 - Highest for the best process and lowest for the worst
- ► EIS: coating capacitance
 - Lowest for the best process and highest for the worst
- ► Tafel: corrosion current
 - Lowest for the best process and high for the worst
- Tafel: corrosion potential
 - Most positive for the best process and most negative for the worst

Conclusions

Salt Fog

- Ranked process for time in salt spray and pit numbers
 - ► T2 > T1 > T4 > T3

Electrochemistry

- Ranked processes for various electrochemical parameters:
 - ► T2 > T1 > T4 > T3

Excellent correlation \rightarrow can use electrochemistry as a predictor of salt fog performance

Future Electrochemical Testing

- Determine best conversion coating processes on different types of aluminum alloys (5052, 6061, 7075) and different light metals (Mg, Zn/Ni)
- Product reliability control for new products
- Link exact time in salt spray to electrochemical performance for global cutoffs on coating performance
- Different pretreatments to determine best performing full process rather than just optimizing one step of the pretreatment

MEON SURFACE TECHNOLOGY Questions?

See us at Booth 1118

Supplemental Slides

Full Faraday Cage with Electrochemical Cell Setup

Fitting with Gamry software-Levenberg-Marquardt algorithm

- Damped least -squares method
 - Set of data pairs, fit to a curve model where the sum of the squares of the deviations from actual data are minimized
 - Iterative process, with an initial guess provided then algorithm converges on the minimum deviation
 - Damping factor adjusted at each iteration to slowly approach the actual minimum
- Interpolates between Gauss-Newton algorithm and gradient descent
 - More robust than Gauss-Newton, but slower to fit

Electrochemistry- Tafel Plots with Butler-Volmer Fitting in Harrison's Solution

Salt Fog Results Compared to Electrochemistry- 10% v/v Harrison's Solution⁴⁵

Pane nam	el Ie	Salt Spray Time (# pits)	Open Circuit Potential (V)	Polarization Resistance (Ω)	Coating Capacitance (Farads)	Corrosion Rate (mpy)	Corrosion Potential (V)
T1		336 hr (7)	-0.6000	24,280	2.81E-5	0.16	-0.6450
Т2		840 (6, 10)	-0.4800	98,640	0.38E-5	0.03	-0.4520
тз		336 (four panels with 5+)	-0.6320	11,300	0.31E-5	0.24	-0.5940
T4		336 (one panel with 5+, three others starting to pit)	-0.5300	15,500	0.23E-5	0.51	-0.5260