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Overview 
 
It is widely recognized in many industries that sustainability is a key driver of innovation.  Numerous companies, especially large 
ones who made sustainability as a goal, are achieving clearly more competitive advantages.  The metal finishing industry, 
however, is clearly behind others in response to the challenging needs for sustainable development.   
 
This research project aims to: 

1. Create a metal-finishing-specific sustainability metrics system, which will contain sets of indicators for measuring 
economic, environmental and social sustainability, 

2. Develop a general and effective method for systematic sustainability assessment of any metal finishing facility that could 
have multiple production lines, and for estimating the capacities of technologies for sustainability performance 
improvement, 

3. Develop a sustainability-oriented strategy analysis method that can be used to analyze sustainability assessment 
results, identify and rank weaknesses in the economic, environmental, and social categories, and then evaluate 
technical options for performance improvement and profitability assurance in plants, and 

4. Introduce the sustainability metrics system and methods for sustainability assessment and strategic analysis to the 
industry. 

This will help metal finishing facilities to conduct a self-managed sustainability assessment as well as identify technical solutions 
for sustainability performance improvement. 
 

Progress Report (Quarter 14) 
1. Student participation 
 
Mahboubeh Moghadasi, a Ph.D. student in the PI’s group, conducted research in this reporting period.  She was financially 
supported mainly by the PI’s two grants from the National Science Foundation (NSF) and partially by this AESF research project.  
Her research has been focused on the development of a set of Digital Twins (DTs) using the Physics-Informed Neural Network 
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(PINN) technology.  She has made impressive progress in learning PINN fundamentals, writing computer codes using Python - a 
high-level, general-purpose programming language, and simulating a PINN-based cleaning system model set.  The technical 
component of this report is mainly based on her research, under the PI’s supervision. 
 
Ryan Kitelinger, an undergraduate student of chemical engineering at Florida Institute of Technology, was hired by the PI as an 
NSF REU fellow to conduct 10-week research in the PI’s lab during the Summer Academy of Sustainable Manufacturing at 
Wayne State University (June 1 to Aug. 10, 2023).  The student learned the fundamentals of electroplating and engineering 
sustainability through literature survey and conducted computer simulation of a cleaning system model set, assisted by 
Mahboubeh Moghadasi.  The student presented his work during the PI’s lab group’s meetings and the Summer Academy at 
Wayne State every week.  He was recognized as the Best REU Student during the Poster Symposium of the WSU-NSF REU 
Summer Academy in Sustainable Manufacturing on Aug. 10, 2023. 
 
2. Summary of project activities 
 
Since no publication on the PINN-based DT for electroplating has been identified, we have first provided a general description 
about the PINN in this report.  We then present a set of reduced-order first-principle-based models for parts cleaning, which is a 
core part of the PINN.  It is necessary to state that the PINN-based DT is a very new research area.  The purpose of our study in 
this period is to understand how the PINN works, how to structure it appropriately, and how to train and analyze it effectively in 
the application to cleaning systems. 
 
2.1 PINN-based digital twinning: basics and architecture 
 
General description.  Advanced manufacturing comes into the digital age.  Among top strategic digital technologies, Digital 
Twin (DT) technology has received significant attention.  DT is a virtual representation that serves as a digital counterpart of a 
physical object or system.  It is characterized by real-time reflection, interaction and convergence in physical space between 
historical data and real-time data, and between physical and virtual spaces, and self-evolution.  A more recent development in 
the DT community is the introduction of PINN, which is a type of universal function approximator that can embed the knowledge 
of any physical laws that govern a given data-set in the learning process.  The PINN is an innovative Artificial Intelligence (AI) 
approach that combines conventional neural network (NN) architectures with the principles of physics (Nascimento, et al., 
2020).1  Unlike regular NNs that rely solely on input data, the PINN ensures that its predictions align with established physical 
laws, resulting in predictions that are both data-informed and physically consistent.  This unique fusion allows for more accurate 
simulation and the ability to adapt to real-world variations by adjusting physical parameters based on actual system data. 
 
A remarkable advantage of PINN is its ability to handle situations with limited data effectively. Data scarcity is a common 
challenge in many real-world applications, and PINNs offer an efficient solution to address this issue (Raissi, et al., 2018).2  By 
leveraging its inherent understanding of physical laws, PINNs can make predictions beyond the scope of training data.  This 
capability is particularly valuable in scenarios where data availability is limited or incomplete, which is often the case in 
electroplating plants.  Furthermore, PINNs can provide more transparent and interpretable information, as compared with many 
other NNs, which are often criticized for their "black box" nature.  This transparency allows researchers and practitioners to gain 
insights when making decisions.  PINNs have been successfully applied to solve forward and inverse problems involving 
nonlinear partial differential equations (PDEs).  However, like any technology, the PINN approach has its limitations.  The 
integration of physical laws into the NN architecture increases its computational demands, which may require more robust 
hardware or extended training periods (Nascimento et al., 2020).1  Additionally, a solid grasp of relevant physical laws is 
essential for effective implementation of PINNs.  Complex scenarios with unique physical properties may pose integration 
challenges that need to be carefully addressed.  One approach is to use parametric reduced-order models (ROM), instead of 
PDE, in PINNs (Fu, et al., 2023).3 
 
In pursuit of developing strategies and solutions for electroplating sustainability, we have been studying a PINN-based DT 
approach.  The PINN consists of sets of nonlinear ROMs representing any process, such as alkaline or acid cleaning, single or 
multiple rinsing, and types of plating. 
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Architectural aspects.  We have explored architectural integration approaches to harness the full potential of PINN when 
studying electroplating systems.  The structure and design of an NN play a pivotal role in determining its efficiency, scalability 
and overall performance.  Given the unique nature of PINN, where physical laws intertwine with data-driven learning, it is 
imperative to select the appropriate architecture that can seamlessly blend these two realms.  The following two primary 
architectures have been investigated. 
 
PINN as a layer in a Feed-forward Neural Network (FNN).  In this setup, a PINN is incorporated as a concluding layer within a 
standard FNN.  Figure 1 shows a schematic diagram of the PINN.  While this design ensures a streamlined integration of 
physical laws into a prediction process, it operates 
predominantly in a sequential manner.  This means 
that each input passes through the network in a 
predefined order.  While effective in many cases, it 
might not be able to fully capture the temporal 
dynamics of certain processes. 
 
PINN as a cell in a Recurrent Neural Network 
(RNN).  This design treats a PINN as an integral cell 
(Fig. 2a) within an RNN (Fig. 2b).  Recurrent 
networks are known for their ability to remember past 
information, making them particularly suitable for 
processes that have temporal sequences or where 
past events influence future outcomes.  By 
embedding a PINN in this structure, we can ensure 
that both temporal dynamics and physical laws are 
considered concurrently during predictions. 
 
2.2 PINN-based DTs for general cleaning 
systems 
 
As the core component of the PINN-based DTs, 
the integrated, intertwined cleaning system models 
can provide the following time variant information: 
(i) the surface cleanness of the parts in cleaning 
units, and (ii) the chemical concentration dynamics 
in the units. 
 
Integrated cleaning system DT – Parametric 
Reduced-Order Models.  In a cleaning unit, 
chemicals are consumed to remove dirt from the 
surface of parts and then partially lost through 
drag-out.  The amount of dirt on parts is negatively 
proportional to a dirt removal rate, which is 
determined by the type of chemicals used, their 
concentrations, and the type and amount of the dirt 
on parts. The dirt removal model has the following 
form. 
 

  𝐴 𝑟 𝑡      (1) 

 
  𝑟 𝑡 𝛾 𝑡 𝐶 𝑡 𝑤 𝑡      (2) 
 

 
Figure 1 - PINN as the last layer of a feedforward neural 
network (FNN). 

 
Figure 2 - PINN-embedded RNN: (a) a PINN cell and  
(b) an RNN configuration. 
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  𝛾 𝑡 𝛾 1 𝑒      (3) 
  
where 𝐴𝑝 is the total surface area of the parts in a barrel (cm2); 𝑊𝑝𝑐 is the amount of dirt on parts (g/cm2); t is time (min); 𝑟𝑝𝑐 is 
the dirt removal rate in the cleaning tank (g/min); 𝛾𝑐 is the looseness of the dirt on parts (cm2·gal-soln/gal-chem·min); 𝐶a is the 
chemical concentration in the cleaning tank (gal-chem/gal-soln); 𝛾0 is the kinetic constant (cm2·gal-soln/gal-chem·min); 𝑡0𝑐 is the 
time when the barrel enters the cleaning tank, and 𝛼 is a constant. 
 
The amount of chemicals in the cleaning unit changes in 
operation.  Its dynamics can be modeled as: 
 

   𝑉 𝑤 𝑡  (4) 

 
where 𝑉𝑐 is the capacity of the cleaning tank (gal-soln), and η is 
the chemical capacity coefficient for dirt removal (g-dirt/gal-
chem). 
 
Model parameter settings.  Model parameters and initial 
conduction for simulation are listed in Table 1.  Note that two 
parameters (𝛾0 and η) will vary in operation, which can be 
adjusted dynamically by the PINN. 
 
2.3 Architecture selection, PINN training and accuracy and runtime study 
 
We have conducted extensive simulation, testing and evaluation using two PINN architectures, the PINN-FNN and the PINN-
RNN, for studying alkaline cleaning.  Comparing with the results shown in Figs. 3 to 6 (the blue and green curves in each figure), 
we found that the PINN-RNN was more capable of describing process dynamics, and more importantly of predicting system 
performance in the future, which was consistent with the governing physical principles. 
 
 
 
 

Figure 3 - Dirt removal dynamics in a cleaning unit (by a 
PINN-FNN). 

Figure 4 - Dirt removal dynamics in a cleaning unit (by a 
PINN-RNN). 

Table 1 - Model parameters in the case study. 
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Figure 5 - Chemical concentration change in a cleaning unit 
(by a PINN-FNN). 

Figure 6 - Chemical concentration change in a cleaning unit 
(by a PINN-RNN). 

 
Furthermore, when it comes to parameter adjustments for both 
the DTs, it is evident that the PINN-RNN provides a more 
accurate estimation of physical parameters (𝛾0 and η) in 
Equations (3) and (4) (Table 2).  Note that the initial estimate of 
the parameters used by the PINN-FNN and the PINN-RNN 
were identical.  But the two parameters were automatically 
adjusted in the PINN-RNN, which made the model estimation and prediction more accurate, while the PINN-FNN had no ability 
to adjust them, which caused model prediction errors. 
 
PINN-RNN training method.  In the realm of employing PINN in our DTs for cleaning, understanding and optimizing model 
training dynamics is crucial to ensuring the efficacy and accuracy of model-based prediction.  The training process adjusts the 
RNN’s weights and biases to minimize the difference between its predictions and actual observed data.  In the PINN simulation, 
the physical parameters are introduced as weights to the model.  In this context, we explored two primary training approaches, 
namely manual training and automated training utilizing Keras' model.fit() method.  Each shows its distinctive advantages and 
applicability. 
 
Manual training, although computationally intense and often slower, offers nuanced, fine-tuned control over the learning process.  
This is vital when dealing with models containing multiple parameters to be adjusted.  The approach is particularly beneficial for 
our cleaning system model, which includes two parameters to be adjusted.  Manual training allowed us to apply different learning 
rates for each parameter, which is a strategy that proves to be instrumental in navigating the complex parameter space without 
violating the physical constraints embedded in the PINN. 
 
On the other hand, if a model has a single parameter to adjust, it is more suitable to use Keras’ model.fit() method.  This 
function performs the training process automatically, adjusting the model's parameters to minimize the loss function efficiently.  
The singular parameter in a model meant that we could leverage the speed and computational efficiency of model.fit() without 
sacrificing the model's accuracy or physical consistency. 
 
In essence, the choice of training strategy became inherently tied to the complexity of the model and the number of parameters 
requiring adjustment.  The dual approach, applying manual training for models with multiple parameters and utilizing model.fit() 
for those with a singular parameter, provided a balanced methodology.  This ensures that, across all models, the training process 
will be both computationally efficient and maintains the vital physical consistency and accuracy that PINN brings to the table. 
 
Solution methods.  Two methods were explored for solving the parametric ROMs in Equations 1 to 4.  They are the Euler 
method and the Runge-Kutta method.  Our focus was to compare their computational accuracy and computational efficiency. 

Table 2 – Model parameter adjustment. 
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The Euler method is featured for its simplicity and computational efficiency.  If the reduced-order model (ROM) is first-order 
ODEs (either linear or nonlinear), this method is effective in solution derivation with a relatively low computational cost. The 
method uses a straightforward iterative process to advance the solution in small increments, making it especially appealing when 
dealing with real-time simulations or scenarios where computational resources might be limited. However, its solution can 
sometimes be less accurate than other methods, especially if a system experiences rapid or complex changes. 
 
Conversely, the Runge-Kutta method is often lauded for its accuracy in numerical solutions of ordinary differential equations 
(ODEs).  While typically demanding more computational resources compared to the Euler method, the Runge-Kutta method 
offers enhanced precision by considering not just the initial point, but also taking midpoints into account in its iterative procedure.  
This often results in more accurate approximations of solution, especially in scenarios where the system dynamics involve rapid 
or non-linear changes. 
 
Since the parametric ROM for cleaning are first-order nonlinear 
models, the Euler method was preferred.  This allowed us to 
achieve a harmonious balance of computational efficiency and 
solution accuracy.  The runtime and accuracy by different 
methods are summarized in Table 3.  Figures 7 to 10 show 
clearly that the predictions of the dirt removal from parts and 
the chemical concentration in the cleaning system by the Euler 
method is better than those by the Runge-Kutta method. 
 

  
Figure 7 - Dirt removal dynamics using the Runge-Kutta 
method. 

Figure 8 - Dirt removal dynamics using the Euler method. 

  
Figure 9 - Chemical concentration by the Runge-Kutta 
method. Figure 10 - Chemical concentration by the Euler method. 

Table 3 – Solution method comparison. 
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Data reliability and data size. Data quality (reliability) and quantity (size) are critical to the successful application of PINN.  In an 
electroplating plant, the collected operational data are often imprecise and may contain various noises.  Thus, it is important to 
assess how well a PINN can navigate through those nuances while still providing dependable and actionable insights. 
 
Outcomes using noisy data set.  One of the characteristics of PINN is its deftness in managing data of varied quality.  Our 
study shows that PINN can maintain a notable degree of effectiveness even when the data is not pristine.  Whether navigating 
through clean data, where variables are well-behaved and noise is minimal, or working with noisy data, where variables exhibit 
random fluctuations, PINN exhibited a robust capacity to make predictions that adhered closely to physical principles.  Figure 11 
showcases the outcomes using noisy data, vividly illustrating the model’s predictability when facing data with varying degrees of 
noises. 
 

  
Figure 11 - Simulation results obtained using noisy dataset. 

 
Data size effect. On a parallel front, the 
effectiveness of PINN was also evaluated with 
respect to dataset size.  In a situation where 
data was scarce or limited, the intrinsic 
capability of PINN to leverage physical laws 
played a significant role.  This characteristic 
ensured that even with a small dataset, PINN 
could generate predictions that were not just data-driven but also substantiated by established physical principles.  It was 
observed that while the predictive accuracy with a small dataset might not match the precision achieved using larger datasets, 
the prediction was still quite reliable, maintaining adherence to the underlying physical phenomena.  These can be observed 
through comparing simulation results shown in Figures 12 to 14 and in Table 4. 

 
Figure 12 - Dirt removal dynamics using (a) small and (b) large dataset (epochs=100). 

Table 4 - Impact of data size on parameter adjustment and runtime. 
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Figure 13 - Chemical concentration dynamics using (a) small and (b) large dataset (epochs=100). 

 

 
Figure 14 - Dirt removal and chemical concentration dynamics using small dataset (epochs=200). 

 
2.4.  Results 
 
Our in-depth study on the PINN with its application using the parametric reduced-order models (ROM) shows that the PINN-
RNN, in conjunction with the Euler method for solution derivation is most effective.  The  extensive simulation shows that the 
PINN-based digital twinning of the cleaning system can characterize system’s dynamics very precisely, even if there exist data 
uncertainty and scarcity issues.  The key simulation results are listed below. 
 
Single barrel based cleaning.  The dirt removal from parts and the chemical concentration changes in a cleaning system are 
shown in Figs. 12b and 13b, where the actual dynamics (the blue curves) and the predicted curves (the green curves, by the 
PINN-RNN) are matched very well. 
 
Multiple barrel based cleaning.  We used the trained PINN-RNN to simulate the continuous operation of a cleaning system.  
Assuming that each barrel contains 250 lbs. of parts, and the cleaning time of each barrel is 4 min, we simulated 48 barrels of 
parts for cleaning in the system.  The PINN was tasked with managing a considerably more dynamic and temporally influenced 
environment.  Various initial dirt amounts were considered in the simulation to become closer to a realistic process 
representation.  The simulations result, illustrated in Figs. 15 and 16, underscore a robust and stable prediction curve.  This 
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stability was maintained even amidst the intricate and dynamic conditions of managing multiple barrels across varying cleaning 
stages. 

 
Figure 15 - Dirt removal from the parts surface (Wpc ) in 48 barrels (250 lbs. of parts per barrel). 

 
Figure 16 - Chemical concentration (CA) change in the period of cleaning 48 barrels. 

 
Automatic adjustment of model parameters.  Two model parameters, Gamma and Eta, are key ones to be adjusted, based on 
the dynamic change of operating conditions.  The PINN-RNN was capable of adjusting them automatically.  Figures 17 and 18 
show the parameter value adjustment, which contribute to the accurate prediction of parts cleaning quality as well as chemical 
concentration change in operation. 

  

Figure 17 – Adjustment of Gamma parameter values for 48-
barrel cleaning. 

Figure 18 – Adjustment of Eta parameter values for 48-barrel 
cleaning. 
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2.5 Summary 
 
We have significantly gained a much deeper understanding and fundamental knowledge of PINN-based digital twinning for 
engineering applications.  Although the case study on general cleaning is relatively simple, we are now able to construct an 
effective PINN that contains parametric reduced order models (ROM) and conduct a comprehensive analysis of system 
performance.  The experience gained in the study will be very valuable for our next-step study in the following directions: (1) to 
develop PINNs for other types of cleaning, rinsing of different configurations and electroplating, and (2) to perform PINN-based 
dynamic sustainability assessment and decision making for sustainable manufacturing.  Hopefully, we will be able to 
demonstrate that the PINN-based DT technology will eventually be a game-changer for the research and practice for sustainable 
electroplating. 
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