Decorative Trivalent Chromium Deposits Applied by Barrel Electroplating

Mark Schario – Columbia Chemical

www.columbiachemical.com

Sur/Fin 2019

TOPICS

History

Chromium Barrel Plating Overview & Approach

Review of Parameters and Analysis

Conclusion & Next Steps

www.columbiachemical.com

Sur/Fin 2019

History of Trivalent Chromium Plating

- In 1939 the U.S. Bureau of Mines began research and developed a electrowinning process in the 1940s.
- Union Carbide also began research on trivalent chromium at this time.
- Together they broke down many obstacles in the art of trivalent chromium plating.

www.columbiachemical.com

Sur/Fin 2019

History of Trivalent Chromium Plating

- In the early 1970's Albright Wilson further developed the process, their big contributions were additives to prevent the formation of hexavalent chromium and a method to precipitate metallic impurities.
- The Albright Wilson chemistry was a mixed sulfate/chloride electrolyte.
- There were other developments that were sulfate only electrolytes.

www.columbiachemical.com

Sur/Fin 2019

History of Trivalent Chromium Plating

Trivalent Chromium plating has proven to be a viable alternative to hexavalent chromium in both cost and performance in decorative rack plating for over 20 years.

www.columbiachemical.com

Sur/Fin 2019

Chromium Barrel Plating

Until recently, chromium was never successfully applied in a decorative barrel process simply due to the limitations of hexavalent chromium electrolytes.

www.columbiachemical.com

Sur/Fin 2019

Chromium Barrel Plating - Hexavalent

Hexavalent Chromium is prone to burning in the HCD areas.

Hexavalent Chromium does not tolerate current interruption.

Therefore it is nearly impossible to plate Hexavalent Chromium in a Barrel.

www.columbiachemical.com

Sur/Fin 2019

Trivalent Chromium Barrel Plating

Trivalent chromium does not burn.

Trivalent chromium tolerates current interruption.

Therefore it is theoretically possible to plate trivalent chromium in a barrel.

www.columbiachemical.com

Sur/Fin 2019

Trivalent Chromium Barrel Plating - Key Advantage

For small parts such as bolts, screws, sockets and fittings, trivalent chromium barrel plating can provide dramatic labor savings.

www.columbiachemical.com

Sur/Fin 2019

Trivalent Chromium Barrel Plating - Challenges

Coverage of deposit is less than nickel.

Conductivity of solution is less than nickel.

www.columbiachemical.com

Sur/Fin 2019

Approach to Problem

Evaluate current electrolyte used for rack plating then modify to meet barrel plating needs.

www.columbiachemical.com

Sur/Fin 2019

Evaluate current electrolyte used for rack plating for use in barrel plating

80 ASF - 5 minutes		
	Cr Thickness Screw Head (nm)	Cr Thickness Screw Thread (nm)
Average	228.26	7.94
Standard Deviation	150.90	5.63

>95% REJECTS

www.columbiachemical.com

Sur/Fin 2019

Evaluate current electrolyte used for rack plating for use in barrel plating

125 ASF - 5 minutes		
	Cr Thickness Screw Head (nm)	Cr Thickness Screw Thread (nm)
Average	216.74	32.84
Standard Deviation	130.74	18.78

>95% REJECTS

www.columbiachemical.com

Sur/Fin 2019

Evaluate current rack electrolyte for use in barrel plating

Conclusion: Electrolyte needs modified to improve coverage.

www.columbiachemical.com

Sur/Fin 2019

Electrolyte Modification

Electrolyte was then modified to improve coverage.

www.columbiachemical.com

Sur/Fin 2019

Modify Electrolyte to Optimize Coverage

70 ASF - 5 minutes		
	Cr Thickness Screw Head (nm)	Cr Thickness Screw Thread (nm)
Average	259.02	94.06
Standard Deviation	124.14	94.79

33% REJECTS

www.columbiachemical.com

Sur/Fin 2019

Electrolyte & Contact Modification

Contact area was also modified to further optimize coverage.

www.columbiachemical.com

Sur/Fin 2019

Modify Electrolyte and Contact Area

50 ASF - 5 minutes		
	Cr Thickness Screw Head (nm)	Cr Thickness Screw Thread (nm)
Average	217.69	83.20
Standard Deviation	107.95	63.34

15% REJECTS

www.columbiachemical.com

Sur/Fin 2019

Modify Electrolyte and Contact Area

80 ASF - 5 minutes		
	Cr Thickness Screw Head (nm)	Cr Thickness Screw Thread (nm)
Average	356.63	93.87
Standard Deviation	143.22	56.96

5-10% REJECTS

www.columbiachemical.com

Sur/Fin 2019

Electrolyte, Contact Area and Load Modification

Mixed Load to further test different part geometries.

www.columbiachemical.com

Sur/Fin 2019

Modify Electrolyte and Contact Area - Mixed Load

70 ASF - 5 minutes		
	Cr Thickness Screw Head (nm)	Cr Thickness Screw Thread (nm)
Average	181.41	104.29
Standard Deviation	63.38	60.52

NO REJECTS

www.columbiachemical.com

Sur/Fin 2019

Conclusion

By modifying the electrolyte and optimizing the cathode contact area barrel trivalent chromium is a commercially viable process

www.columbiachemical.com

Sur/Fin 2019

Future Work

Identify additional trial sites

Evaluate in larger barrel sizes

Evaluate on other part geometries

Complete field testing and analysis

www.columbiachemical.com

Sur/Fin 2019